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Major Hybrid Multi Petaflop Systems in the US 

Blue Waters: Sustained Petascale Performance 

• Production Science at Full Scale 

• 244 XE Cabinets + 32 XK Cabinets 

● > 25K compute nodes 

• 11.5 Petaflops 

• 1.5 Petabytes of total memory  

• 25 Petabytes Storage 

● 1 TB/sec IO 

• Cray’s scalable Linux Environment 

• HPC-focused GPU/CPU Programming Environment 

 

Titan: A “Jaguar-Size” System with GPUs 

• 200 cabinets 

• 18,688 compute nodes 

• 25x32x24 3D torus (22.5 TB/s global BW) 

• 128 I/O blades (512 PCIe-2 @ 16 GB/s bidir) 

• 1,278 TB of memory 

• 4,352 sq. ft. 

• 10 MW 



The Cray XK7 hybrid architecture 

● NVIDIA Kepler (K20) GPUs 

 

● AMD Interlagos CPU 

 

● Cray Gemini interconnect 

● high bandwidth/low latency scalability 

 

● Unified X86/GPU programming environment 

 

● Fully compatible with Cray XE6 product line 

 

● Fully upgradeable from Cray XT/XE systems 

 



Structural Issues with Accelerated Computing 

● Trick is to keep kernel data structures resident in GPU 
memory as much as possible 
● Avoid copying between CPU and GPU 

● Use asynchronous, non-blocking, communication, multi-level 
overlapping 

CPU 
~150 GF 

GPU 
~665 GF 

32GB  

SDRAM 6 GB  

GDDR 

PCIe-2 

8 GB/s 

~170 GB/s ~42 GB/s 

Bandwidth 

and Synchronization 



Cray’s Vision for Accelerated Computing 

● Most important hurdle for widespread adoption of accelerated 
computing in HPC is programming difficulty 
● Need a single programming model that is portable across machine 

types 
● Portable expression of heterogeneity and multi-level parallelism 

● Programming model and optimization should not be significantly difference for 
“accelerated” nodes and multi-core x86 processors 

● Allow users to maintain a single code base 

 

● Cray’s approach to Accelerator Programming is to provide an 
ease of use tightly coupled high level programming 
environment with compilers, libraries, and tools that can hide the 
complexity of the system 

 

● Ease of use is possible with  
● Compiler making it feasible for users to write applications in Fortran, C, 

and C++ 
● Tools to help users port and optimize for hybrid systems 
● Auto-tuned scientific libraries 



● Fortran, C, and C++ compilers 
● Directives to drive compiler optimization 

● Compiler does the “heavy lifting” to split off the work destined     
for the accelerator and perform the necessary data transfers 

● Compiler optimizations to take advantage of accelerator and               
multi-core X86 hardware appropriately 

● Advanced users can mix CUDA functions with compiler-generated 
accelerator code 

● Debugger support with DDT and TotalView 
 

● Cray Reveal, built upon an internal compiler database 
containing a representation of the application 
● Source code browsing tool that provides interface between the user, 

the compiler, and the performance analysis tool  
● Scoping tool to help users port and optimize applications 
● Performance measurement and analysis information for identification of 

main loops of the code to focus refactoring 
 

● Scientific Libraries support 
● Auto-tuned libraries (using Cray Auto-Tuning Framework) 

Programming for a Node with Accelerator 



OpenACC Accelerator Programming Model 

● Why a new model? There are already many ways to program: 

● CUDA  and OpenCL 

● All are quite low-level and closely coupled to the GPU 

● PGI CUDA Fortran: still CUDA just in a better base language 

● User needs to write specialized kernels: 

● Hard to write and debug 

● Hard to optimize for specific GPU 

● Hard to update (porting/functionality) 

● OpenACC Directives provide high-level approach 

● Simple programming model for hybrid systems 

● Easier to maintain/port/extend code 

● Non-executable statements (comments, pragmas) 

● The same source code can be compiled for multicore CPU 

● Based on the work in the OpenMP Accelerator Subcommittee 

●  PGI accelerator directives, CAPS HMPP 

● First steps in the right direction – Needed standardization 

● Possible performance sacrifice 

● A small performance gap is acceptable (do you still hand-code in assembly?) 

● Goal is to provide at least 80% of the performance obtained with hand coded CUDA 

● Compiler support: all complete in 2012 

● Cray CCE: complete in the 8.1 release 

● PGI Accelerator version 12.6 onwards 

● CAPS Full support in version 1.3 

 

 



Motivating Example: Reduction  

 

● Sum elements of an array 

 

● Original Fortran code 

 

● 2.0 GFlops 

 

!$acc data present(a,b) 

  

a = 0.0 

 

do i = 1,n 

  a = a + b(i) 

end do 

   

!$acc end parallel 

!$acc end data 

 

 

 



The reduction code in simple CUDA 

 

 

dim3 dimBlock(128, 1, 1); 

dim3 dimGrid(2048, 1, 1); 

dim3 small_dimGrid(16, 1, 1); 

  

int smemSize = 128 * sizeof(int); 

int *buffer_d, *red_d; 

int *small_buffer_d; 

  

cudaMalloc((void **) &buffer_d , 

sizeof(int)*2048); 

cudaMalloc((void **) &small_buffer_d , 

sizeof(int)*16); 

cudaMalloc((void **) &red_d , sizeof(int)); 

  

  

reduce0<<< dimGrid, dimBlock, smemSize >>>(b_d, 

buffer_d); 

  

reduce0<<< small_dimGrid, dimBlock, smemSize 

>>>(buffer_d, small_buffer_d); 

  

reduce0<<< 1, 16, smemSize >>>(small_buffer_d, 

red_d); 

  

cudaMemcpy(&red, red_d, sizeof(int), 

cudaMemcpyDeviceToHost); 

  

*a = red; 

  

cudaFree(buffer_d); 

cudaFree(small_buffer_d); 

cudaFree(b_d); 

} 

__global__ void reduce0(int *g_idata, int 

*g_odata) 

{ 

extern __shared__ int sdata[]; 

  

unsigned int tid = threadIdx.x; 

unsigned int i = blockIdx.x*blockDim.x + 

threadIdx.x; 

sdata[tid] = g_idata[i]; 

__syncthreads(); 

  

for(unsigned int s=1; s < blockDim.x; s *= 2) { 

if ((tid % (2*s)) == 0) { 

sdata[tid] += sdata[tid + s]; 

} 

__syncthreads(); 

} 

  

if (tid == 0) g_odata[blockIdx.x] = sdata[0]; 

} 

  

 

extern "C" void reduce0_cuda_(int *n, int *a, 

int *b) 

{ 

int *b_d,red; 

const int b_size = *n; 

  

  

cudaMalloc((void **) &b_d , sizeof(int)*b_size); 

cudaMemcpy(b_d, b, sizeof(int)*b_size, 

cudaMemcpyHostToDevice); 

1.74 GFlops 



The reduction code in optimized CUDA 
 

 

  if (tid < 32) 

    { 

        volatile T* smem = sdata; 

        if (blockSize >=  64) { smem[tid] = mySum = mySum + smem[tid + 32];  } 

        if (blockSize >=  32) { smem[tid] = mySum = mySum + smem[tid + 16];  } 

        if (blockSize >=  16) { smem[tid] = mySum = mySum + smem[tid + 8];  } 

        if (blockSize >=   8) { smem[tid] = mySum = mySum + smem[tid + 4];  } 

        if (blockSize >=   4) { smem[tid] = mySum = mySum + smem[tid + 2];  } 

        if (blockSize >=   2) { smem[tid] = mySum = mySum + smem[tid + 1];  } 

    } 

 

    if (tid == 0) 

        g_odata[blockIdx.x] = sdata[0]; 

} 

extern "C" void reduce6_cuda_(int *n, int *a, int *b) 

{ 

   int *b_d; 

   const int b_size = *n; 

  

   cudaMalloc((void **) &b_d , sizeof(int)*b_size); 

   cudaMemcpy(b_d, b, sizeof(int)*b_size, cudaMemcpyHostToDevice); 

  

   dim3 dimBlock(128, 1, 1); 

   dim3 dimGrid(128, 1, 1); 

   dim3 small_dimGrid(1, 1, 1); 

   int smemSize = 128 * sizeof(int); 

   int *buffer_d; 

   int small_buffer[4],*small_buffer_d; 

  

   cudaMalloc((void **) &buffer_d , sizeof(int)*128); 

   cudaMalloc((void **) &small_buffer_d , sizeof(int)); 

   reduce6<int,128,false><<< dimGrid, dimBlock, smemSize >>>(b_d,buffer_d, 

b_size); 

   reduce6<int,128,false><<< small_dimGrid, dimBlock, smemSize 

>>>(buffer_d, small_buffer_d,128); 

   cudaMemcpy(small_buffer, small_buffer_d, sizeof(int), 

cudaMemcpyDeviceToHost); 

  

   *a = *small_buffer; 

  

   cudaFree(buffer_d); 

   cudaFree(small_buffer_d); 

   cudaFree(b_d); 

} 

template<class T> 

struct SharedMemory 

{ 

    __device__ inline operator       T*() 

    { 

        extern __shared__ int __smem[]; 

        return (T*)__smem; 

    } 

  

    __device__ inline operator const T*() const 

    { 

        extern __shared__ int __smem[]; 

        return (T*)__smem; 

    } 

}; 

  

template <class T, unsigned int blockSize, bool nIsPow2> 

__global__ void 

reduce6(T *g_idata, T *g_odata, unsigned int n) 

{ 

    T *sdata = SharedMemory<T>(); 

  

    unsigned int tid = threadIdx.x; 

    unsigned int i = blockIdx.x*blockSize*2 + threadIdx.x; 

    unsigned int gridSize = blockSize*2*gridDim.x; 

  

    T mySum = 0; 

    while (i < n) 

    { 

        mySum += g_idata[i]; 

        if (nIsPow2 || i + blockSize < n) 

            mySum += g_idata[i+blockSize]; 

        i += gridSize; 

    } 

sdata[tid] = mySum; 

    __syncthreads(); 

  

    if (blockSize >= 512) { if (tid < 256) { sdata[tid] = mySum = mySum 

+ sdata[tid + 256]; } __syncthreads(); } 

    if (blockSize >= 256) { if (tid < 128) { sdata[tid] = mySum = mySum 

+ sdata[tid + 128]; } __syncthreads(); } 

    if (blockSize >= 128) { if (tid <  64) { sdata[tid] = mySum = mySum 

+ sdata[tid +  64]; } __syncthreads(); } 10.5 GFlops 



!$acc data present(a,b) 

  

a = 0.0 

 

!$acc update device(a) 

 

!$acc parallel 

  

!$acc loop reduction(+:a) 

  

do i = 1,n 

  a = a + b(i) 

end do 

   

!$acc end parallel 

!$acc end data 

 

 

 

The reduction code in OpenACC 

● Compiler does the work: 
● Identifies parallel loops within the 

region 

● Splits the code into accelerator 
and host portions 

● Workshares loops running on 
accelerator 
● Make use of MIMD and SIMD style 

parallelism 

● Data movement 
● allocates/frees GPU memory at 

start/end of region 

● moves data to/from GPU 

 

● 8.32 GFlops  

!$acc data present(a,b) 

  

a = 0.0 

 

!$acc update device(a) 

 

!$acc parallel 

  

!$acc loop reduction(+:a) 

  

do i = 1,n 

  a = a + b(i) 

end do 

   

!$acc end parallel 

!$acc end data 

 

 

 

TM 



OpenACC Execution Model 

● In short: It's just like CUDA 
 

● Host-directed execution with attached GPU accelerator 
● Main program executes on “host” (i.e. CPU) 

● Compute intensive regions offloaded to the accelerator device 
● Under control of the host  

● “device” (i.e. GPU) executes parallel regions 
● Typically contain “kernels” (i.e. work-sharing loops), or 
● Kernels regions, containing one or more loops which are executed as 

kernels.   
● Host must orchestrate the execution by:  

● Allocating memory on the accelerator device,  
● Initiating data transfer,  
● Sending the code to the accelerator,  
● Passing arguments to the parallel region,  
● Queuing the device code,  
● Waiting for completion,  
● Transferring results back to the host, and  
● Deallocating memory  

● Host can usually queue a sequence of operations  
● To be executed on the device, one after the other 



OpenACC Memory Model 

● In short: it's just like CUDA 

 

● Memory spaces on the host and device, maybe, distinct 
● Different locations, different address space 

● Data movement performed by host using runtime library calls that 
explicitly move data between the separate spaces 

● GPUs have a weak memory model 
● No synchronization between different execution units (SMs) 

● Unless explicit memory barrier 

● One can write OpenACC kernels with race conditions 
● Giving inconsistent execution results 

● Compiler will catch most errors, but not all (no user-managed barriers) 

● OpenACC 
● Data movement between the memories implicit 

● Managed by the compiler, 

● Based on directives from the programmer. 

● Device memory caches are managed by the compiler  
● With hints from the programmer in the form of directives  



 
!$acc parallel loop !OpenACC 
DO j = 1,M 
  DO i = 2,N-1 
    c(i,j) = a(i,j) + b(i,j) 
  ENDDO 
ENDDO 
!$acc end parallel loop 

A First Example:  
Execute a Region of Code on the GPU 
● Compiler does the work: 

● Identifies parallel loops within the region 

● Determines the kernels needed 

● Splits the code into accelerator and host portions 

● Workshares loops running on accelerator 

● Make use of MIMD and SIMD style parallelism 

● Data movement 

● Allocates/frees GPU memory at start/end of region 

● Moves data to/from GPU 
● Caching (explicitly use GPU shared memory for reused 

data) 
● Automatic caching (e.g. NVIDIA Fermi, Kepler) 

 User can tune default behavior with optional directives and clauses 

 Loop schedule: spreading loop iterations over PEs of GPU 

 Compiler takes care of cases where iterations doesn’t divide threadblock size 

 Parallelism  NVIDIA GPU  SMT node (CPU) 

 gang:  a threadblock  CPU 

 worker:  warp (32 threads)  CPU core 

 vector:   SIMT group of threads SIMD instructions (SSE, AVX) 

read-only write-only 



A First OpenACC Program 

 Two accelerator parallel regions 

 Compiler creates two kernels 
 Loop iterations automatically divided 

across gangs, workers, vectors 

 Breaking parallel region acts as barrier 

 First kernel initializes array 
 Compiler will determine copyout(a) 

 Second kernel updates array 
 Compiler will determine copy(a) 

 Breaking parallel region=barrier 
 No barrier directive (global or within SM) 

 

 Code still compile-able for CPU 

 Array a(:) unnecessarily moved from and to GPU between kernels 

  "data sloshing" 

 
 
PROGRAM main 
  INTEGER :: a(N) 
  <stuff> 
!$acc data copyout(a) 
!$acc parallel loop 
  DO i = 1,N 
   a(i) = i 
  ENDDO 
!$acc end parallel loop 
!$acc parallel loop 
  DO i = 1,N 
   a(i) = 2*a(i) 
  ENDDO 
!$acc end parallel loop 
!$acc end data 
  <stuff> 
END PROGRAM main 



A Second Version 

 Now added a data region 

 Specified arrays only moved at 
boundaries of data region 

 Unspecified arrays moved by 
each kernel 

 No compiler-determined 
movements for data regions 

 Data region can contain host code 
and accelerator regions 

 Copies of arrays independent 

 
 No automatic synchronization of copies within data region 

  User-directed synchronization via update directive 

 Code still compile-able for CPU 

 

 
 
PROGRAM main 
  INTEGER :: a(N) 
  <stuff> 
!$acc data copyout(a) 
!$acc parallel loop 
  DO i = 1,N 
   a(i) = i 
  ENDDO 
!$acc end parallel loop 
!$acc parallel loop 
  DO i = 1,N 
   a(i) = 2*a(i) 
  ENDDO 
!$acc end parallel loop 
!$acc end data 
  <stuff> 
END PROGRAM main 



● Data clauses: 
● copy, copyin, copyout, create 

● e.g. copy moves data "in" to GPU at start of region and "out" to CPU at end 

● Supply list of arrays or array sections  
● Fortran use standard array syntax (“:" notation) 

● C/C++ use extended array syntax [start:length] 

● present: share GPU-resident data between kernels 

● present_or_copy [in,out] (pcopy) 
● Use data if already resident, otherwise move the data 

● Tuning clauses: 
● num_gangs, vector_length, collapse... 

● Optimize GPU occupancy, register and shared memory usage, loop 
scheduling... 

● Some other important clauses: 
● async: Launch accelerator region asynchronously 

● Allows overlap of GPU computation/PCI transfers with CPU 
computation/network 

 

Directive Clauses 



Sharing GPU Data Between Subprograms 

 One of the kernels now in subroutine (maybe in separate file) 

 Compiler supports function calls inside parallel regions 
 Compiler will automatically inline* 

 The present clause uses version of b on GPU without data copy 

 Can also call double_array() from outside a data region 
 Replace present with present_or_copy (can be shortened to pcopy) 

 Original calltree structure of program can be preserved 

 
 
PROGRAM main 
  INTEGER :: a(N) 
  <stuff> 
!$acc data copy(a) 
!$acc parallel loop 
  DO i = 1,N 
   a(i) = i 
  ENDDO 
!$acc end parallel loop 
  CALL double_array(a) 
!$acc end data 
  <stuff> 
END PROGRAM main 

 
INTEGER FUNCTION double_scalar(c) 
  INTEGER :: c 
  double_scalar = 2*c 
END FUNCTION double_scalar 

 
SUBROUTINE double_array(b) 
  INTEGER :: b(N) 
!$acc parallel loop present_or_copy (b) 
  DO i = 1,N 
   b(i) = double_scalar(b(i)) 
  ENDDO 
!$acc end parallel loop 
END SUBROUTINE double_array 



● host_data region exposes accelerator memory address on host 
● nested inside data region 

● Call CUDA-C wrapper (compiled with nvcc; linked with CCE) 
● Must include cudaThreadSynchronize() 

● Before: so asynchronous accelerator kernels definitely finished 

● After: so CUDA kernel definitely finished 

● CUDA kernel written as usual 

● Or use same mechanism to call existing CUDA library 

CUDA Interoperability  
 
PROGRAM main 
  INTEGER :: a(N) 
  <stuff> 
!$acc data copy(a) 
! <Populate a(:) on device 
!  as before> 
!$acc host_data use_device(a) 
  CALL dbl_cuda(a) 
!$acc end host_data 
!$acc end data 
  <stuff> 
END PROGRAM main 

 
 
__global__ void dbl_knl(int *c) { 
  int i = \ 
       blockIdx.x*blockDim.x+threadIdx.x; 
  if (i < N) c[i] *= 2; 
} 
 
extern "C" void dbl_cuda_(int *b_d) { 
  cudaThreadSynchronize(); 
  dbl_knl<<<NBLOCKS,BSIZE>>>(b_d); 
  cudaThreadSynchronize(); 
} 



OpenACC async Clause 

● async[(handle)] clause for parallel, update directives 
● Launch accelerator region/data transfer asynchronously 
● Operations with same handle guaranteed to execute sequentially 

● as for CUDA streams 

● Operations with different handles can overlap 
● if the hardware permits it and runtime chooses to schedule it: 
● can potentially overlap: 

● PCIe transfers in both directions 
● Plus multiple kernels  

● can overlap up to 16 parallel streams with Fermi 

● streams identified by handle (integer-valued) 
● tasks with same handle execute sequentially 
● can wait on one or all tasks 

 
● !$acc wait: waits for completion of all streams of tasks 

● !$acc wait(handle) waits for a specified stream to complete 

● Runtime API library functions 
● can also be used to wait or test for completion 

 



OpenACC async Clause 

● First attempt 
● a simple pipeline: 

● processes array, slice by slice 
● copy data to GPU,  

● process on GPU,  

● bring back to CPU 

● can overlap 3 streams at once 
● use slice number as stream handle  

● don't worry if number gets too large 

● OpenACC runtime maps it back into allowable range (using MOD function) 

 
 
 
REAL(kind=dp) :: 
a(Nvec,Nchunks),b(Nvec,Nchunks) 
 
!$acc data create(a,b) 
DO j = 1,Nchunks 
!$acc update device(a(:,j)) async(j) 
 
!$acc parallel loop async(j) 
  DO i = 1,Nvec 
    b(i,j) = <function of a(i,j)> 
  ENDDO 
 
!$acc update host(b(:,j)) async(j) 
 
ENDDO 
!$acc wait 
!$acc end data 



● Execution times (on Cray XK6): 

● CPU:    3.98s 

● OpenACC, blocking:  3.6s 

● OpenACC, async:   0.82s 

● OpenACC, full async:    0.76s 
 

 

 

● NVIDIA Visual profiler: 
● Time flows to right, streams stacked vertically 

● red:  data transfer to GPU 

● pink: computational kernel on GPU 

● blue: data transfer from GPU 

● vertical slice shows what is overlapping 

● only 7 of 16 streams fit in window 

● collapsed view at bottom 

● async handle modded by number of streams 

● so see multiple coloured bars per stream 

OpenACC async Results 
 
 
INTEGER, PARAMETER :: Nvec = 10000, Nchunks = 10000 
 
REAL(kind=dp) :: a(Nvec,Nchunks), b(Nvec,Nchunks) 
 
!$acc data create(a,b) 
DO j = 1,Nchunks 
!$acc update device(a(:,j)) async(j) 
 
!$acc parallel loop async(j) 
  DO i = 1,Nvec 
    b(i,j) = SQRT(EXP(a(i,j)*2d0)) 
    b(i,j) = LOG(b(i,j)**2d0)/2d0 
  ENDDO 
 
!$acc update host(b(:,j)) async(j) 
 
ENDDO 
!$acc wait 
!$acc end data 


