
Portable and Productive Performance

on Hybrid Systems with OpenACC

Compilers and Tools

Luiz DeRose

Sr. Principal Engineer

Programming Environments Director

Cray Inc.

Major Hybrid Multi Petaflop Systems in the US

Blue Waters: Sustained Petascale Performance

• Production Science at Full Scale

• 244 XE Cabinets + 32 XK Cabinets

● > 25K compute nodes

• 11.5 Petaflops

• 1.5 Petabytes of total memory

• 25 Petabytes Storage

● 1 TB/sec IO

• Cray’s scalable Linux Environment

• HPC-focused GPU/CPU Programming Environment

Titan: A “Jaguar-Size” System with GPUs

• 200 cabinets

• 18,688 compute nodes

• 25x32x24 3D torus (22.5 TB/s global BW)

• 128 I/O blades (512 PCIe-2 @ 16 GB/s bidir)

• 1,278 TB of memory

• 4,352 sq. ft.

• 10 MW

The Cray XK7 hybrid architecture

● NVIDIA Kepler (K20) GPUs

● AMD Interlagos CPU

● Cray Gemini interconnect

● high bandwidth/low latency scalability

● Unified X86/GPU programming environment

● Fully compatible with Cray XE6 product line

● Fully upgradeable from Cray XT/XE systems

Structural Issues with Accelerated Computing

● Trick is to keep kernel data structures resident in GPU
memory as much as possible
● Avoid copying between CPU and GPU

● Use asynchronous, non-blocking, communication, multi-level
overlapping

CPU
~150 GF

GPU
~665 GF

32GB

SDRAM 6 GB

GDDR

PCIe-2

8 GB/s

~170 GB/s ~42 GB/s

Bandwidth

and Synchronization

Cray’s Vision for Accelerated Computing

● Most important hurdle for widespread adoption of accelerated
computing in HPC is programming difficulty
● Need a single programming model that is portable across machine

types
● Portable expression of heterogeneity and multi-level parallelism

● Programming model and optimization should not be significantly difference for
“accelerated” nodes and multi-core x86 processors

● Allow users to maintain a single code base

● Cray’s approach to Accelerator Programming is to provide an
ease of use tightly coupled high level programming
environment with compilers, libraries, and tools that can hide the
complexity of the system

● Ease of use is possible with
● Compiler making it feasible for users to write applications in Fortran, C,

and C++
● Tools to help users port and optimize for hybrid systems
● Auto-tuned scientific libraries

● Fortran, C, and C++ compilers
● Directives to drive compiler optimization

● Compiler does the “heavy lifting” to split off the work destined
for the accelerator and perform the necessary data transfers

● Compiler optimizations to take advantage of accelerator and
multi-core X86 hardware appropriately

● Advanced users can mix CUDA functions with compiler-generated
accelerator code

● Debugger support with DDT and TotalView

● Cray Reveal, built upon an internal compiler database
containing a representation of the application
● Source code browsing tool that provides interface between the user,

the compiler, and the performance analysis tool
● Scoping tool to help users port and optimize applications
● Performance measurement and analysis information for identification of

main loops of the code to focus refactoring

● Scientific Libraries support
● Auto-tuned libraries (using Cray Auto-Tuning Framework)

Programming for a Node with Accelerator

OpenACC Accelerator Programming Model

● Why a new model? There are already many ways to program:

● CUDA and OpenCL

● All are quite low-level and closely coupled to the GPU

● PGI CUDA Fortran: still CUDA just in a better base language

● User needs to write specialized kernels:

● Hard to write and debug

● Hard to optimize for specific GPU

● Hard to update (porting/functionality)

● OpenACC Directives provide high-level approach

● Simple programming model for hybrid systems

● Easier to maintain/port/extend code

● Non-executable statements (comments, pragmas)

● The same source code can be compiled for multicore CPU

● Based on the work in the OpenMP Accelerator Subcommittee

● PGI accelerator directives, CAPS HMPP

● First steps in the right direction – Needed standardization

● Possible performance sacrifice

● A small performance gap is acceptable (do you still hand-code in assembly?)

● Goal is to provide at least 80% of the performance obtained with hand coded CUDA

● Compiler support: all complete in 2012

● Cray CCE: complete in the 8.1 release

● PGI Accelerator version 12.6 onwards

● CAPS Full support in version 1.3

Motivating Example: Reduction

● Sum elements of an array

● Original Fortran code

● 2.0 GFlops

!$acc data present(a,b)

a = 0.0

do i = 1,n

 a = a + b(i)

end do

!$acc end parallel

!$acc end data

The reduction code in simple CUDA

dim3 dimBlock(128, 1, 1);

dim3 dimGrid(2048, 1, 1);

dim3 small_dimGrid(16, 1, 1);

int smemSize = 128 * sizeof(int);

int *buffer_d, *red_d;

int *small_buffer_d;

cudaMalloc((void **) &buffer_d ,

sizeof(int)*2048);

cudaMalloc((void **) &small_buffer_d ,

sizeof(int)*16);

cudaMalloc((void **) &red_d , sizeof(int));

reduce0<<< dimGrid, dimBlock, smemSize >>>(b_d,

buffer_d);

reduce0<<< small_dimGrid, dimBlock, smemSize

>>>(buffer_d, small_buffer_d);

reduce0<<< 1, 16, smemSize >>>(small_buffer_d,

red_d);

cudaMemcpy(&red, red_d, sizeof(int),

cudaMemcpyDeviceToHost);

*a = red;

cudaFree(buffer_d);

cudaFree(small_buffer_d);

cudaFree(b_d);

}

__global__ void reduce0(int *g_idata, int

*g_odata)

{

extern __shared__ int sdata[];

unsigned int tid = threadIdx.x;

unsigned int i = blockIdx.x*blockDim.x +

threadIdx.x;

sdata[tid] = g_idata[i];

__syncthreads();

for(unsigned int s=1; s < blockDim.x; s *= 2) {

if ((tid % (2*s)) == 0) {

sdata[tid] += sdata[tid + s];

}

__syncthreads();

}

if (tid == 0) g_odata[blockIdx.x] = sdata[0];

}

extern "C" void reduce0_cuda_(int *n, int *a,

int *b)

{

int *b_d,red;

const int b_size = *n;

cudaMalloc((void **) &b_d , sizeof(int)*b_size);

cudaMemcpy(b_d, b, sizeof(int)*b_size,

cudaMemcpyHostToDevice);

1.74 GFlops

The reduction code in optimized CUDA

 if (tid < 32)

 {

 volatile T* smem = sdata;

 if (blockSize >= 64) { smem[tid] = mySum = mySum + smem[tid + 32]; }

 if (blockSize >= 32) { smem[tid] = mySum = mySum + smem[tid + 16]; }

 if (blockSize >= 16) { smem[tid] = mySum = mySum + smem[tid + 8]; }

 if (blockSize >= 8) { smem[tid] = mySum = mySum + smem[tid + 4]; }

 if (blockSize >= 4) { smem[tid] = mySum = mySum + smem[tid + 2]; }

 if (blockSize >= 2) { smem[tid] = mySum = mySum + smem[tid + 1]; }

 }

 if (tid == 0)

 g_odata[blockIdx.x] = sdata[0];

}

extern "C" void reduce6_cuda_(int *n, int *a, int *b)

{

 int *b_d;

 const int b_size = *n;

 cudaMalloc((void **) &b_d , sizeof(int)*b_size);

 cudaMemcpy(b_d, b, sizeof(int)*b_size, cudaMemcpyHostToDevice);

 dim3 dimBlock(128, 1, 1);

 dim3 dimGrid(128, 1, 1);

 dim3 small_dimGrid(1, 1, 1);

 int smemSize = 128 * sizeof(int);

 int *buffer_d;

 int small_buffer[4],*small_buffer_d;

 cudaMalloc((void **) &buffer_d , sizeof(int)*128);

 cudaMalloc((void **) &small_buffer_d , sizeof(int));

 reduce6<int,128,false><<< dimGrid, dimBlock, smemSize >>>(b_d,buffer_d,

b_size);

 reduce6<int,128,false><<< small_dimGrid, dimBlock, smemSize

>>>(buffer_d, small_buffer_d,128);

 cudaMemcpy(small_buffer, small_buffer_d, sizeof(int),

cudaMemcpyDeviceToHost);

 *a = *small_buffer;

 cudaFree(buffer_d);

 cudaFree(small_buffer_d);

 cudaFree(b_d);

}

template<class T>

struct SharedMemory

{

 __device__ inline operator T*()

 {

 extern __shared__ int __smem[];

 return (T*)__smem;

 }

 __device__ inline operator const T*() const

 {

 extern __shared__ int __smem[];

 return (T*)__smem;

 }

};

template <class T, unsigned int blockSize, bool nIsPow2>

__global__ void

reduce6(T *g_idata, T *g_odata, unsigned int n)

{

 T *sdata = SharedMemory<T>();

 unsigned int tid = threadIdx.x;

 unsigned int i = blockIdx.x*blockSize*2 + threadIdx.x;

 unsigned int gridSize = blockSize*2*gridDim.x;

 T mySum = 0;

 while (i < n)

 {

 mySum += g_idata[i];

 if (nIsPow2 || i + blockSize < n)

 mySum += g_idata[i+blockSize];

 i += gridSize;

 }

sdata[tid] = mySum;

 __syncthreads();

 if (blockSize >= 512) { if (tid < 256) { sdata[tid] = mySum = mySum

+ sdata[tid + 256]; } __syncthreads(); }

 if (blockSize >= 256) { if (tid < 128) { sdata[tid] = mySum = mySum

+ sdata[tid + 128]; } __syncthreads(); }

 if (blockSize >= 128) { if (tid < 64) { sdata[tid] = mySum = mySum

+ sdata[tid + 64]; } __syncthreads(); } 10.5 GFlops

!$acc data present(a,b)

a = 0.0

!$acc update device(a)

!$acc parallel

!$acc loop reduction(+:a)

do i = 1,n

 a = a + b(i)

end do

!$acc end parallel

!$acc end data

The reduction code in OpenACC

● Compiler does the work:
● Identifies parallel loops within the

region

● Splits the code into accelerator
and host portions

● Workshares loops running on
accelerator
● Make use of MIMD and SIMD style

parallelism

● Data movement
● allocates/frees GPU memory at

start/end of region

● moves data to/from GPU

● 8.32 GFlops

!$acc data present(a,b)

a = 0.0

!$acc update device(a)

!$acc parallel

!$acc loop reduction(+:a)

do i = 1,n

 a = a + b(i)

end do

!$acc end parallel

!$acc end data

TM

OpenACC Execution Model

● In short: It's just like CUDA

● Host-directed execution with attached GPU accelerator
● Main program executes on “host” (i.e. CPU)

● Compute intensive regions offloaded to the accelerator device
● Under control of the host

● “device” (i.e. GPU) executes parallel regions
● Typically contain “kernels” (i.e. work-sharing loops), or
● Kernels regions, containing one or more loops which are executed as

kernels.
● Host must orchestrate the execution by:

● Allocating memory on the accelerator device,
● Initiating data transfer,
● Sending the code to the accelerator,
● Passing arguments to the parallel region,
● Queuing the device code,
● Waiting for completion,
● Transferring results back to the host, and
● Deallocating memory

● Host can usually queue a sequence of operations
● To be executed on the device, one after the other

OpenACC Memory Model

● In short: it's just like CUDA

● Memory spaces on the host and device, maybe, distinct
● Different locations, different address space

● Data movement performed by host using runtime library calls that
explicitly move data between the separate spaces

● GPUs have a weak memory model
● No synchronization between different execution units (SMs)

● Unless explicit memory barrier

● One can write OpenACC kernels with race conditions
● Giving inconsistent execution results

● Compiler will catch most errors, but not all (no user-managed barriers)

● OpenACC
● Data movement between the memories implicit

● Managed by the compiler,

● Based on directives from the programmer.

● Device memory caches are managed by the compiler
● With hints from the programmer in the form of directives

!$acc parallel loop !OpenACC
DO j = 1,M
 DO i = 2,N-1
 c(i,j) = a(i,j) + b(i,j)
 ENDDO
ENDDO
!$acc end parallel loop

A First Example:
Execute a Region of Code on the GPU
● Compiler does the work:

● Identifies parallel loops within the region

● Determines the kernels needed

● Splits the code into accelerator and host portions

● Workshares loops running on accelerator

● Make use of MIMD and SIMD style parallelism

● Data movement

● Allocates/frees GPU memory at start/end of region

● Moves data to/from GPU
● Caching (explicitly use GPU shared memory for reused

data)
● Automatic caching (e.g. NVIDIA Fermi, Kepler)

 User can tune default behavior with optional directives and clauses

 Loop schedule: spreading loop iterations over PEs of GPU

 Compiler takes care of cases where iterations doesn’t divide threadblock size

 Parallelism NVIDIA GPU SMT node (CPU)

 gang: a threadblock CPU

 worker: warp (32 threads) CPU core

 vector: SIMT group of threads SIMD instructions (SSE, AVX)

read-only write-only

A First OpenACC Program

 Two accelerator parallel regions

 Compiler creates two kernels
 Loop iterations automatically divided

across gangs, workers, vectors

 Breaking parallel region acts as barrier

 First kernel initializes array
 Compiler will determine copyout(a)

 Second kernel updates array
 Compiler will determine copy(a)

 Breaking parallel region=barrier
 No barrier directive (global or within SM)

 Code still compile-able for CPU

 Array a(:) unnecessarily moved from and to GPU between kernels

 "data sloshing"

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$acc data copyout(a)
!$acc parallel loop
 DO i = 1,N
 a(i) = i
 ENDDO
!$acc end parallel loop
!$acc parallel loop
 DO i = 1,N
 a(i) = 2*a(i)
 ENDDO
!$acc end parallel loop
!$acc end data
 <stuff>
END PROGRAM main

A Second Version

 Now added a data region

 Specified arrays only moved at
boundaries of data region

 Unspecified arrays moved by
each kernel

 No compiler-determined
movements for data regions

 Data region can contain host code
and accelerator regions

 Copies of arrays independent

 No automatic synchronization of copies within data region

 User-directed synchronization via update directive

 Code still compile-able for CPU

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$acc data copyout(a)
!$acc parallel loop
 DO i = 1,N
 a(i) = i
 ENDDO
!$acc end parallel loop
!$acc parallel loop
 DO i = 1,N
 a(i) = 2*a(i)
 ENDDO
!$acc end parallel loop
!$acc end data
 <stuff>
END PROGRAM main

● Data clauses:
● copy, copyin, copyout, create

● e.g. copy moves data "in" to GPU at start of region and "out" to CPU at end

● Supply list of arrays or array sections
● Fortran use standard array syntax (“:" notation)

● C/C++ use extended array syntax [start:length]

● present: share GPU-resident data between kernels

● present_or_copy [in,out] (pcopy)
● Use data if already resident, otherwise move the data

● Tuning clauses:
● num_gangs, vector_length, collapse...

● Optimize GPU occupancy, register and shared memory usage, loop
scheduling...

● Some other important clauses:
● async: Launch accelerator region asynchronously

● Allows overlap of GPU computation/PCI transfers with CPU
computation/network

Directive Clauses

Sharing GPU Data Between Subprograms

 One of the kernels now in subroutine (maybe in separate file)

 Compiler supports function calls inside parallel regions
 Compiler will automatically inline*

 The present clause uses version of b on GPU without data copy

 Can also call double_array() from outside a data region
 Replace present with present_or_copy (can be shortened to pcopy)

 Original calltree structure of program can be preserved

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$acc data copy(a)
!$acc parallel loop
 DO i = 1,N
 a(i) = i
 ENDDO
!$acc end parallel loop
 CALL double_array(a)
!$acc end data
 <stuff>
END PROGRAM main

INTEGER FUNCTION double_scalar(c)
 INTEGER :: c
 double_scalar = 2*c
END FUNCTION double_scalar

SUBROUTINE double_array(b)
 INTEGER :: b(N)
!$acc parallel loop present_or_copy (b)
 DO i = 1,N
 b(i) = double_scalar(b(i))
 ENDDO
!$acc end parallel loop
END SUBROUTINE double_array

● host_data region exposes accelerator memory address on host
● nested inside data region

● Call CUDA-C wrapper (compiled with nvcc; linked with CCE)
● Must include cudaThreadSynchronize()

● Before: so asynchronous accelerator kernels definitely finished

● After: so CUDA kernel definitely finished

● CUDA kernel written as usual

● Or use same mechanism to call existing CUDA library

CUDA Interoperability

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$acc data copy(a)
! <Populate a(:) on device
! as before>
!$acc host_data use_device(a)
 CALL dbl_cuda(a)
!$acc end host_data
!$acc end data
 <stuff>
END PROGRAM main

__global__ void dbl_knl(int *c) {
 int i = \
 blockIdx.x*blockDim.x+threadIdx.x;
 if (i < N) c[i] *= 2;
}

extern "C" void dbl_cuda_(int *b_d) {
 cudaThreadSynchronize();
 dbl_knl<<<NBLOCKS,BSIZE>>>(b_d);
 cudaThreadSynchronize();
}

OpenACC async Clause

● async[(handle)] clause for parallel, update directives
● Launch accelerator region/data transfer asynchronously
● Operations with same handle guaranteed to execute sequentially

● as for CUDA streams

● Operations with different handles can overlap
● if the hardware permits it and runtime chooses to schedule it:
● can potentially overlap:

● PCIe transfers in both directions
● Plus multiple kernels

● can overlap up to 16 parallel streams with Fermi

● streams identified by handle (integer-valued)
● tasks with same handle execute sequentially
● can wait on one or all tasks

● !$acc wait: waits for completion of all streams of tasks

● !$acc wait(handle) waits for a specified stream to complete

● Runtime API library functions
● can also be used to wait or test for completion

OpenACC async Clause

● First attempt
● a simple pipeline:

● processes array, slice by slice
● copy data to GPU,

● process on GPU,

● bring back to CPU

● can overlap 3 streams at once
● use slice number as stream handle

● don't worry if number gets too large

● OpenACC runtime maps it back into allowable range (using MOD function)

REAL(kind=dp) ::
a(Nvec,Nchunks),b(Nvec,Nchunks)

!$acc data create(a,b)
DO j = 1,Nchunks
!$acc update device(a(:,j)) async(j)

!$acc parallel loop async(j)
 DO i = 1,Nvec
 b(i,j) = <function of a(i,j)>
 ENDDO

!$acc update host(b(:,j)) async(j)

ENDDO
!$acc wait
!$acc end data

● Execution times (on Cray XK6):

● CPU: 3.98s

● OpenACC, blocking: 3.6s

● OpenACC, async: 0.82s

● OpenACC, full async: 0.76s

● NVIDIA Visual profiler:
● Time flows to right, streams stacked vertically

● red: data transfer to GPU

● pink: computational kernel on GPU

● blue: data transfer from GPU

● vertical slice shows what is overlapping

● only 7 of 16 streams fit in window

● collapsed view at bottom

● async handle modded by number of streams

● so see multiple coloured bars per stream

OpenACC async Results

INTEGER, PARAMETER :: Nvec = 10000, Nchunks = 10000

REAL(kind=dp) :: a(Nvec,Nchunks), b(Nvec,Nchunks)

!$acc data create(a,b)
DO j = 1,Nchunks
!$acc update device(a(:,j)) async(j)

!$acc parallel loop async(j)
 DO i = 1,Nvec
 b(i,j) = SQRT(EXP(a(i,j)*2d0))
 b(i,j) = LOG(b(i,j)**2d0)/2d0
 ENDDO

!$acc update host(b(:,j)) async(j)

ENDDO
!$acc wait
!$acc end data

